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Abstract. Alladi and Gordon introduced the method of weighted words in

1993 to prove a refinement and generalisation of Schur’s partition identity.

Together with Andrews, they later used it to refine Capparelli’s and Göllnitz’
identities too. In this paper, we present a new variant of this method, which

can be used to study more complicated partition identities, and apply it to

prove refinements and generalisations of three partition identities. The first
one, Siladić’s theorem (2002), comes from vertex operator algebras. The sec-

ond one, a conjectural identity of Primc (1999), comes from crystal base the-

ory. The last one is a very general identity about coloured overpartitions
which generalises and unifies several generalisations of Schur’s theorem due to

Alladi-Gordon, Andrews, Corteel-Lovejoy, Lovejoy and the author.

1. Introduction and principle of the method

1.1. The original method. A partition of n is a non-increasing sequence of pos-
itive integers whose sum is n. For example, the 5 partitions of 4 are 4, 3 + 1, 2 + 2,
2 + 1 + 1 and 1 + 1 + 1 + 1.

The method of weighted words was introduced by Alladi and Gordon [All97] to
give refinement of Rogers-Ramanujan type partition identities, which are theorems
of the form “for all n, the number of partitions of n whose parts satisfy some
difference conditions is equal to the number of partitions of n whose parts satisfy
some congruence conditions.” The first identity they applied it to in [AG93, AG95]
was Schur’s theorem [Sch26]:

Theorem 1 (Schur). For any integer n, let A(n) denote the number of partitions
of n into distinct parts congruent to 1 or 2 modulo 3 and B(n) the number of
partitions of n such that parts differ by at least 3 and no two consecutive multiples
of 3 appear. Then for all n, A(n) = B(n).

The idea of the method of weighted words is to work at the “non-dilated level”
and consider partitions into integers appearing in different colours a,b,c,... which,
under the correct dilations, become the partitions of the considered theorem. The
colours also represent free parameters which allow one to refine the theorems.

For example, in the case of Schur’s theorem, Alladi and Gordon used three
colours

c < a < b, (1)

giving the order 1c < 1a < 1b < 2c < 2a < 2b < · · · on coloured integers. They
considered partitions λ1 + · · ·+λs into coloured integers, with no part 1c, satisfying
the difference conditions

λi − λi+1 ≥
{

2 if c(λi) = ab or c(λi) < c(λi+1) in (1)

1 otherwise,

1
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where c(λ) denotes the colour of λ. Under the dilations

q → q3, a→ aq−2, b→ bq−1, c→ cq−3, (2)

the coloured integers are transformed as follows

ka → 3k − 2, kb → 3k − 1, kc → 3k − 3,

and the partitions above become those of Schur’s theorem.
Then, they try to find for which values of a, b, c the generating function for these

coloured partitions is an infinite product, which means that it is also the generating
function for partitions with congruence conditions.

To do so, Alladi and Gordon used the fact that a partition with n parts satisfying
the difference conditions is a minimal partition with n parts satisfying the difference
conditions to which one has added a partition having at most n parts. So they
computed the generating function for such minimal partitions using q-binomial
coefficients, and concluded that is an infinite product representing partitions with
congruence conditions if and only if c = ab by using q-series identities.

Theorem 2 (Alladi-Gordon). Let A(u, v, n) be the number of partitions of n into
u distinct parts coloured a and v distinct parts coloured b. Let B(u, v, n) be the
number of partitions λ1 + · · · + λs of n into distinct parts, with no part 1ab, such
that λi − λi+1 ≥ 2 if c(λi) = ab or c(λi) < c(λi+1) in (1), having u parts a or ab
and v parts b or ab.
Then for all u, v, n ∈ N, A(u, v, n) = B(u, v, n).
In other words,

∑

u,v,n∈N
B(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞.

Here we used the q-series notation (a; q)∞ :=
∏
n≥0(1−aqn). Under the dilations

(2), this gives a refinement of Schur’s theorem keeping track of the number of parts
whose colour involves a and the number of parts whose colours involve b. Such
non-dilated theorems are very interesting, as using other dilations or a different
ordering of the colours can lead to infinitely many new identities.

This method was successfully applied to other identities too, such as Göllnitz’
or Capparelli’s theorems [AAG95a, AAG95b]. However, when there are too many
colours or when the difference conditions are too complicated, it might be hard to
apply this method directly, as the minimal partitions might be hard to compute
(even in the above-mentioned papers, this required long computations involving
q-binomial or q-multinomial coefficients). Moreover it might also be complicated to
find helpful q-series identities when we are working with too many colour variables.
Therefore, we introduce a new version of the method of weighted words, which
doesn’t use minimal partitions and q-series identities, but only recurrences and
q-difference equations.

1.2. The new version of the method. Our method starts as the original one.
We assign a colour to each residue class modulo the number considered in the
partition identity. For example in the case of Schur’s theorem, we will assign colour
a (resp. b, c) to the numbers congruent to 1 (resp. 2, 3) modulo 3. Then, before
going at the non-dilated level, we consider partitions with difference conditions with
those added parameters. By studying the first terms of their generating function,
we find some necessary conditions on the colours to obtain an infinite product which
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is the generating function for partitions with congruence conditions. This can be
done with a computer program when there are too many colours. In the case of
Schur’s theorem, the series starts with 1 + aq + bq2 + cq3 + aq4 + (a2 + b)q5 + · · · .
For this to be the beginning of the expansion of a suitable infinite product, we need
c = ab.

Then, we keep these restrictions on the colours and translate the difference con-
ditions at the non-dilated level as in Alladi and Gordon’s method. Now we want
to show that the generating function for these partitions is an infinite product,
but avoid using minimal partitions. To do so, we define, for q, a, b, ... of module
smaller than 1, Gk(q; a, b, ...), the generating function for the coloured partitions
with difference conditions with largest part ≤ k (where k is a coloured integer),
where the power of q (resp. a, b, ...) is the number partitioned (resp. the number
of parts with colour a, b, ...). Using the difference conditions, we give recurrences
satisfied by those Gk(q; a, b, ...)’s, and initial conditions chosen so that we obtain
the correct first values of Gk(q; a, b, ...) with the recurrences. For example, in the
case of Schur’s theorem, we obtain

Gka(q; a, b) = Gkab
(q; a, b) + aqkG(k−1)a(q; a, b),

Gkb(q; a, b) = Gka(q; a, b) + bqkG(k−1)b(q; a, b),

Gkab
(q; a, b) = G(k−1)b(q; a, b) + abqkG(k−2)b(q; a, b),

and the initial conditions

G0a(q; a, b) = G0b(q; a, b) = G0ab
(q; a, b) = 1,

G−1a(q; a, b) = G−1b(q; a, b) = G−1ab
(q; a, b) = 0.

Finally, we use these recurrences to find G∞(q; a, b, ...) := limk→∞Gk(q; a, b, ...),
which will be the generating function for all coloured partitions with difference
conditions, as there is no more restriction on the largest part. This is the only
non-automatic step, and the techniques to do it may vary. For example, in the case
of Schur’s theorem, we can prove that for all k ∈ N,

G(k+2)ab
(q; a, b) = (1 + aq)(1 + bq)Gkb(q; aq, bq).

Therefore we have

G∞(q; a, b) = (1 + aq)(1 + bq)G∞(q; aq, bq),

and iterating leads to

G∞(q; a, b) = (−aq; q)∞(−bq; q)∞G∞(q; 0, 0) = (−aq; q)∞(−bq; q)∞,
which is an infinite product as wanted. This completes the proof.

In the next section, we present three different applications of this new version of
the method of weighted words.

2. Applications

2.1. Siladić’s theorem. The first example of application of our method is Siladić’s
theorem [Sil02], a partition identity which was proved in 2002 by studying level 1

modules of the twisted affine Lie algebra A
(2)
2 .

Theorem 3 (Siladić). Let n ∈ N. Let A(n) denote the number of partitions of n
into distinct odd parts, and B(n) denote the number of partitions λ1 + · · · + λs of
n satisfying the following conditions:
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(1) ∀i ≥ 1, λi 6= 2,
(2) ∀i ≥ 1, λi − λi+1 ≥ 5,
(3) ∀i ≥ 1,

λi − λi+1 = 5⇒ λi ≡ 1, 4 mod 8,

λi − λi+1 = 6⇒ λi ≡ 1, 3, 5, 7 mod 8,

λi − λi+1 = 7⇒ λi ≡ 0, 1, 3, 4, 6, 7 mod 8,

λi − λi+1 = 8⇒ λi ≡ 0, 1, 3, 4, 5, 7 mod 8.

Then for all n, A(n) = B(n).

Siladić’s theorem is a good example of an identity where the classical method
of weighted words would be difficult to apply. The difference conditions are quite
intricate so it seems hard to find the minimal partitions and therefore the generating
function for the partitions with difference conditions. Even if that was possible, it
might also not be that easy to find a q-series identity (with up to 8 colour variables)
which would lead to the correct infinite product.

However, our new version of the method works quite well in that case. First, we
assign a different colour to each congruence class modulo 8. By studying the first
terms of the generating function for partitions with difference conditions, we notice
that some relations between colours are necessary for this generating function to be
an infinite product. The integers congruent to 1 or 5 modulo 8 have colour a, those
congruent to 3 or 7 modulo 8 have colour b, those congruent to 0 or 4 modulo 8
have colour ab, those congruent to 2 modulo 8 have colour b2 and those congruent
to 6 modulo 8 have colour a2, where a and b are some free parameters. The infinite
product we seem to obtain in that case is (−aq; q4)∞(−bq3; q4)∞.

Now let us translate this at the non-dilated level. We consider integers appearing
in five colours a, b, ab, a2 and b2, ordered as follows:

1ab < 1a < 1b2 < 1b < 2ab < 2a < 3a2 < 2b < 3ab < 3a < 3b2 < 3b < · · · .
Note that the colours a2 and b2 only appear for odd integers, and that 1a2 doesn’t
appear. We consider partitions λ1 + · · · + λs where the entry (x, y) in the matrix
A gives the minimal difference between λi of colour x and λi+1 of colour y:

A =




a b ab a2 b2

aodd 2 2 1 2 2
b2 2 3 2 2 4
bodd 1 2 1 2 2
abeven 2 2 2 3 3
aeven 2 2 2 3 3
a2 3 3 3 4 4
beven 1 2 1 1 3
abodd 2 3 2 2 3




.

We defined this order and matrix such that under the dilations

q → q4, a→ aq−3, b→ bq−1, (3)

the order on the coloured integers becomes the natural ordering

0ab < 1a < 2b2 < 3b < 4ab < 5a < 6a2 < 7b < 8ab < 9a < 10b2 < 11b < · · · ,
and the difference conditions become those of Siladić’s theorem.

We prove the following refinement and non-dilated version of Siladić’s theorem.
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Theorem 4. For u, v, n ∈ N, let D(u, v, n) denote the number of partitions λ1 +
· · · + λs of n, where 1 can only be of colour a, satisfying the difference conditions
given by the matrix A, such that u equals the number of parts a or ab plus twice the
number of parts a2 and v equals the number of parts b or ab plus twice the number
of parts b2.

Then ∑

u,v,n∈N
D(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞.

Idea of the proof of Theorem 4. We define Gk(q; a, b) to be the generating function
for coloured partitions with difference conditions and largest part at most k. Using
combinatorial reasoning on the largest part and the difference conditions of matrix
A, we start by giving eight recurrences for the Gk(q; a, b)’s, such as

G2k+1ab
(q; a, b) = G2kb(q; a, b) + abq2k+1G2k−1a(q; a, b).

Then we use them to prove the following equations by induction on k ∈ N∗:

G2k+1ab
(q; a, b) = (1 + aq)G2ka(q; b, aq),

G2k+1b2
(q; a, b) = (1 + aq)G2kb(q; b, aq),

G2k+2ab
(q; a, b) = (1 + aq)G2k+1a(q; b, aq),

G2k+1a2 (q; a, b) = (1 + aq)G2k−1b(q; b, aq).

Finally, letting k tend to infinity and iterating leads to

G∞(q; a, b) = (1 + aq)G∞(q; b, aq)

= (1 + aq)(1 + bq)G∞(q; aq, bq)

= (−aq; q)∞(−bq; q)∞.
This is the generating function for partitions into distinct parts coloured a or b. �

By doing the dilations (3), we obtain the following new refinement of Siladić’s
theorem.

Theorem 5. For u, v, n ∈ N, let C4(u, v, n) denote the number of partitions of n
into u distinct parts congruent to 1 modulo 4 and v distinct parts congruent to 3
modulo 4. Let D4(u, v, n) denote the number of partitions λ1+· · ·+λs of n such that
u equals the number of parts congruent to 0 or 1 modulo 4 plus twice the number of
parts congruent to 6 modulo 8 and v equals the number of parts congruent to 0 or
3 modulo 4 plus twice the number of parts congruent to 2 modulo 8, satisfying the
difference conditions. Then C4(u, v, n) = D4(u, v, n).

Moreover, the non-dilated Theorem 4 allows one to obtain infinitely many new
identities by doing different dilations. In particular, the infinite product in Theo-
rem 4 is exactly the same as in Alladi and Gordon’s non-dilated version of Schur’s
theorem (Theorem 2). Thus the same dilations as theirs leads to a new companion
of Schur’s theorem.

Theorem 6. For u, v, n ∈ N, let C3(u, v, n) denote the number of partitions of n
into u distinct parts congruent to 1 modulo 3 and v distinct parts congruent to 2
modulo 3. Let D3(u, v, n) denote the number of partitions λ1 + · · ·+ λs of n in two
colours, say ordinary and primed, such that only parts congruent to ±1 mod 6 can
be primed, 1′ is not a part, and such that u equals the number of ordinary parts
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congruent to 0 or 1 modulo 3 plus twice the number of primed parts congruent to
5 modulo 6 and v equals the number of ordinary parts congruent to 0 or 2 modulo
3 plus twice the number of primed parts congruent to 1 modulo 6, satisfying the
following conditions:

λi − λi+1 ≥





4 + χ(λ′i+1) if λi ≡ 1, 2, 3, 5 mod 6 and is not primed,

5 + χ(λ′i+1) if λi ≡ 0, 4 mod 6,

6 + χ(λ′i+1) if λi ≡ 1, 5 mod 6 and is primed,

where

χ(λ′i+1) =

{
= 1 if λi+1 is primed,

= 0 otherwise.

Then C3(u, v, n) = D3(u, v, n).

Detailed proofs and more applications can be found in [Douar].

2.2. Primc’s conjecture. Our method also applies to prove another result coming
from representation theory. In [Pri99], Primc studied partition identities arising
from crystal base theory. In particular, he considered partitions λ1 + · · ·+ λs into
integers in four colours a, b, c, d, with the order

1a < 1b < 1c < 1d < 2a < 2b < 2c < 2d < · · · , (4)

such that the entry (x, y) in the matrix B gives the minimal difference between λi
of colour x and λi+1 of colour y:

B =




a b c d

a 2 1 2 2
b 1 0 1 1
c 0 1 0 2
d 0 1 0 2


.

Primc conjectured that, under the dilations

ka → 2k − 1, kb → 2k, kc → 2k, kd → 2k + 1,

the generating function for these coloured partitions is equal to 1
(q;q)∞

.

We can use our method to prove Primc’s conjecture, and actually refine it as a
non-dilated partition identity where we keep track of the parts coloured a, c and d
(the usual test with the first values of the generating function shows that we should
set b = 1 to obtain a suitable infinite product).

Theorem 7. Let A(n; k, `,m) denote the number of partitions defined above with
k parts coloured a, ` parts coloured c and m parts coloured d. Then

∑

n,k,`,m≥0
A(n; k, `,m)qnakc`dm =

(−aq; q2)∞(−dq; q2)∞
(q; q)∞(cq; q2)∞

.

Under the dilations

q → q2, a→ aq−1, c→ c, d→ dq,

the ordering of integers (4) becomes

1a < 2b < 2c < 3d < 3a < 4b < 4c < 5d < · · · ,
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the matrix B becomes

B2 =




a b c d

a 4 1 3 2
b 3 0 2 1
c 1 2 0 3
d 2 3 1 4


,

and this gives the following refinement of Primc’s conjecture.

Theorem 8. Let A2(n; k, `,m) denote the number of coloured partitions λ1+· · ·+λs
of n, such that odd parts can be coloured a or d and even parts can be coloured b or
c, with no part 1d, such that λi−λi+1 ≥ B2(c(λi), c(λi+1)), having k parts coloured
a, ` parts coloured c and m parts coloured d. Then

∑

n,k,`,m≥0
A2(n; k, `,m)qnakc`dm =

(−aq; q4)∞(−dq3; q4)∞
(q2; q2)∞(cq2; q4)∞

.

One recovers Primc’s conjecture by setting a = c = d = 1, as the infinite product
becomes

(−q; q4)∞(−q3; q4)∞
(q2; q2)∞(q2; q4)∞

=
(−q; q2)∞(q; q2)∞

(q2; q2)∞(q2; q4)∞(q; q2)∞

=
(q2; q4)∞

(q; q)∞(q2; q4)∞

=
1

(q; q)∞
.

Idea of the proof of Theorem 7. Define Gk(q; a, c, d) (resp. Ek(q; a, c, d)) to be the
generating function for coloured partitions satisfying the difference conditions from
matrix A with the added condition that the largest part is at most (resp. equal to)
k. As usual, we want to find G∞(q; a, c, d) := limk→∞Gk(q; a, c, d), which is the
generating function for all partitions with difference conditions, as there is no more
restriction on the size of the largest part.

We start by using the matrixB to give four recurrences relating theGk(q; a, c, d)’s
and the Ek(q; a, c, d)’s. For example, we prove

Gka(q; a, c, d)−G(k−1)d(q; a, c, d) = Eka(q; a, c, d)

= aqk(E(k−1)b(q; a, c, d) +G(k−2)d(q; a, c, d)).

Then we combine these four equations to obtain a larger recurrence equation
involving only Gkd(q; a, c, d)’s :

(1− cqk)Gkd(q; a, c, d) =
1− cq2k
1− qk G(k−1)d(q; a, c, d)

+
aqk + dqk + adq2k

1− qk−1 G(k−2)d(q; a, c, d) +
adq2k−1

1− qk−2G(k−3)d(q; a, c, d).

(5)

Finally we use the technique consisting of going back and forth from recurrences
to q-difference equations previously introduced by the author [Dou16a, Dou17] to
lower the degree of the equations, and conclude by using Appell’s lemma to obtain
G∞(q; a, c, d). �

The details of the proof and some applications of Theorem 7 can be found in a
paper with Jeremy Lovejoy [DLar].



8 JEHANNE DOUSSE

2.3. Andrews’ theorems for overpartitions. The last example of application
of our method is a general theorem on coloured overpartitions.

Let r be a positive integer. We define r primary colours u1, . . . , ur and use them
to define 2r − 1 colours ũ1, . . . , ũ2r−1 as follows:

ũi := u
ε1(i)
1 · · ·uεr(i)r ,

where

εk(i) :=

{
1 if 2k−1 appears in the binary expansion of i

0 otherwise.

They are ordered in the natural ordering, namely

ũ1 < · · · < ũ2r−1.

Now for all i ∈ {1, . . . , 2r−1}, let v(ũi) (resp. z(ũi)) be the smallest (resp. largest)
primary colour appearing in the colour ũi and w(ũi) be the number of primary
colours appearing in ũi. Finally, for i, j ∈ {1, . . . , 2r − 1}, let

δ(ũi, ũj) :=

{
1 if z(ũi) < v(ũj)

0 otherwise.

We prove the following theorem.

Theorem 9. Let A(`1, . . . , `r; k, n) denote the number of overpartitions of n into
non-negative parts coloured u1, . . . , ur−1 or ur, having `i parts coloured ui for all
i ∈ {1, . . . , r} and k non-overlined parts. Let B(`1, . . . , `r; k, n) denote the number
of overpartitions λ1 + · · · + λs of n into non-negative parts coloured ũ1, . . . , ũ2r−2
or ũ2r−1, such that for all i ∈ {1, . . . , r}, `i parts have ui as one of their primary
colours, having k non-overlined parts and satisfying the difference conditions

λi − λi+1 ≥ w(c(λi+1)) + χ(λi+1)− 1 + δ(c(λi), c(λi+1)),

where χ(λi+1) = 1 if λi+1 is overlined and 0 otherwise.
Then for all `1, . . . , `r, k, n ≥ 0,

A(`1, . . . , `r; k, n) = B(`1, . . . , `r; k, n).

Theorem 9 generalises and unifies Schur’s theorem [Sch26], its weighted words
version due to Alladi and Gordon [AG93] (Theorem 2), its overpartition version due
to Lovejoy [Lov05], two generalisations of Schur’s theorem due to Andrews [And68,
And69], their weighted words version due to Corteel-Lovejoy [CL06] and generalisa-
tions of Andrews’ theorems due to the author[Dou16a, Dou17]. All these generalisa-
tions of Schur’s theorem are summarised in Figure 2.3, where A −→ B means that
the theorem corresponding to the infinite product A is generalised by the theorem
corresponding to the infinite product B.

Here again, the minimal partitions do not seem easy to obtain as there are many
colours and the difference conditions are quite intricate. Therefore our method is
easier to apply. However, given that in Theorem 9, the minimal difference between
λi and λi+1 depends on certain conditions on the smaller smaller part λi+1, it is
more convenient to find q-difference equations on the generating functions with an
added restriction on the smallest part rather than on the largest part. Details of
the proof can be found in the preprint [Dou16b].
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Figure 1. The generalisations of Schur’s theorem

Schur (1926)
(−q; q3)∞(−q2; q3)∞

Andrews (1969)∏r
k=1(−qa(k); qN)∞

Andrews (1968)∏r
k=1(−qN−a(k); qN)∞

Alladi-Gordon
(1993)

(−a; q)∞(−b; q)∞

Corteel-Lovejoy
(2006)∏r

k=1(−uk; q)∞

Dousse (2014)
∏r
k=1

(−qa(k);qN )∞
(dqa(k);qN )∞

Dousse (2015)
∏r
k=1

(−qN−a(k);qN )∞
(dqN−a(k);qN )∞

Lovejoy (2005)
(−a;q)∞(−b;q)∞
(da;q)∞(db;q)∞

Lovejoy (2005)
(−q;q3)∞(−q2;q3)∞
(dq;q3)∞(dq2;q3)∞

Theorem 9∏r
k=1

(−uk;q)∞
(duk;q)∞

3. Conclusion

This new version of the method of weighted words seems to have a wide range of
application, and it would be interesting to see if it can be used to prove refinements
of other partition identities with intricate difference conditions, such as another
theorem of Primc [Pri99] which involves difference conditions given by a matrix of
size 9× 9.

Another interesting question would be to find representation-theoretic interpre-
tations for the new colour variables added in the identities of Siladić and Primc.
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